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Plasticity theory for fibre-reinforced composites 

A.J .M.  S P E N C E R  
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, UK 

Abstract. Recent experiments reported in [1] show that for a boron-aluminium fibre-reinforced composite plastic 
yielding is effectively independent of tension in the fibre direction over a wide range of values of this tension. This 
confirms a long-standing conjecture by the author and colleagues. The results have major implications for the 
formulation of plasticity theories for fibre-reinforced materials. This paper reviews the theory of anisotropic 
plasticity based on the usual assumptions of plasticity theory, together with the property that yielding is not affected 
by a superposed tension in the fibre direction. Yield conditions, flow rules and hardening rules are formulated for 
uniaxial reinforcement; brief consideration is given to a material reinforced by two families of fibres. 

I.  Introduct ion  

Dvorak,  Bahei-el-din, Macheret  and Liu [1] have recently reported some important  experi- 
ments on the elastic-plastic behaviour of a fibre-reinforced boron-aluminium composite. The 
experiments were performed on axially reinforced tubular specimens loaded by axial tension, 
torsion and internal pressure. Among other results, they show that over a wide range of 
values of the direct stress in the fibre-direction (essentially over the range in which the yield 
or failure stress of the fibre is not exceeded) the yield behaviour of the composite is 
independent  of this direct stress in the fibre direction. The effect is shown in Fig. 1, which is 
based on Fig. 7 of [1]. The yield surface in the relevant stress space is 'sausage-shaped',  
being a fairly long cylinder with closed ends. It is also shown by the extensive experiments 
described in [1] that subsequent to plastic deformation the yield surface retains this 
sausage-shape but translates in stress-space, demonstrating a large degree of kinematic 
hardening. 

These results provide striking confirmation of a conjecture made by the author and 
colleagues over twenty years ago [2-5]. The results have important  implications for the 
formulat ion of theories of plasticity for fibre-reinforced composites, with particular reference 
to metal-matrix composites. These implications have been explored in previous publications 
[2-15] but prior to the availability of experimental information, the theory had to be 
regarded in a rather tentative manner.  As the experimental data now exist, it seems 
worthwhile to draw attention to this work. This paper is a summary of the theory proposed 
in the papers cited above. 

A theory of the rigid-plastic plastic behaviour of materials reinforced by a single family of 
fibres was formulated by Mulhern, Rogers and Spencer [2]. This theory assumed the material 
to be inextensible in the fibre direction, and it was shown that, as a consequence of this 
assumption and the associated flow rule, the yield function is independent  of the fibre 
tension (that  is, the direct stress in the fibre direction). Subsequently the same authors [3] 
formulated an elastic-plastic theory of fibre-reinforced materials, in which it was assumed 
that the plastic part of the extensional strain in the fibre direction is zero, and in this case 
also it follows from the associated flow rule that plastic yielding is independent  of fibre 



108 A. J.M. Spencer 

~r12/kt 2 F 

• w • 

I I I I - l'q'/kt 
} 1 2 3 4 ~ 5 

Fig. 1. Experimental  results by Dvorak et al. [1] for initial yield of a boron-aluminium fibre-reinforced composite,  
with fibres parallel to the xj-axis. 

tension. However, this theory does not require inextensible fibres, because it admits an 
elastic strain in the fibre direction. 

Smith and Spencer [4] formulated a rigid-plastic theory for material reinforced by two 
families of inextensible fibres, but adopted a slightly different point of view; they postulated 
that yielding is independent of fibre tensions. It then follows, if the associated flow rule is 
adopted, that the plastic extensional strain in a fibre direction is zero. The same viewpoint 
was taken in several subsequent publications, for example [5-15]. The assumptions of (a) 
inextensibility in the fibre direction, and (b) yield independent of fibre tension, are, in 
conjunction with the associated flow rule, virtually equivalent in rigid-plastic theory. 
However, in an elastic-plastic theory, (b) is less restrictive than (a), because it permits an 
axial elastic strain. Since (b) is susceptible to direct experimental observation, it seems to be 
the more natural choice of postulate for materials which exhibit this kind of behaviour. 

2. Initial  yield condit ions  - one family  of  fibres 

We refer all vector and tensor quantities to a system of rectangular cartesian coordinates x i. 
The Cauchy stress is denoted by o-, with cartesian components 0%. 

In most theories of metal plasticity, we postulate a yield function f(~rij) such that in 
admissible stress states f ~< 0, with f =  0 when plastic deformation is taking place. If the 
plastic material is isotropic then f can be expressed as a function of the stress invariants tr o-, 
tr o-2 and tr o -3. In isotropic metal plasticity it is observed experimentally that for many 
materials yielding is effectively independent of a superposed hydrostatic pressure, or 
equivalently of tr o-. This observation greatly simplifies the formulation and application of 
the theory. It is incorporated into the theory by restricting f to depend on o- only through the 
deviatoric stress s, where 

s =  o ' -  ~I t r  o ' .  (2.1) 

Then tr s = 0 and f can be expressed as a function of tr s 2 and tr S 3. 
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For  anisotropic materials f is a function of 0- (or s) which is invariant under the appropriate 
t ransformation group which describes the anisotropy. A material reinforced by a single 
family of fibres, randomly distributed in their cross-sectional planes, is locally transversely 
isotropic with respect to the local fibre direction, which can be characterised by a unit vector 
a. In this case f is a function of the five invariants [2, 5, 12] 

tr o",  tr 0 -2 t r  0 -3 0 -2 .  (2.2) , , a - o ' . a ,  a ,  a .  

For  fibre-reinforced metals we expect initial yielding to remain independent  of tr 0-. We now 
have in [1] experimental  confirmation that f is independent of the stress a- 0-- a in the fibre 
direction over a wide range of values of this stress. The extra-stress s', defined as 

s '  = 0 -  - l ( t r  0-  - a .  0 - -  a ) I  + ½ ( t r  0-  - 3 a .  0 - -  a ) a  ® a ,  (2.3) 

(where a ® a  denotes the tensor product)  has the property that s' is unchanged if 0- is 
replaced by 0 - -  p I  + Ta ® a for arbitrary p (representing a hydrostatic pressure) and T 
(representing a tension in the fibre direction). Thus s' is independent  of hydrostatic pressure 
and fibre tension. Consequently,  if f(o-q) is expressed as a function of s', then f is 
independent  of hydrostatic pressure and fibre tension. Thus s' has the same role in relation 
to independence of hydrostatic pressure and fibre tension as s has in relation to independ- 
ence of hydrostatic pressure only. Fur thermore,  it follows from (2.3) that 

t r s '  = 0 ,  a - s ' - a =  0.  (2.4) 

Now the set (2.2) is equivalent to 

tr 0-,  t r  S ¢2 t2 , t r s  '3 , a - o ' - a ,  a . s  - a ,  

so, if f is independent  of tr 0- and a .  0- • a, and the material is transversely isotropic with 
respect to the direction a, then f may be expressed as a function of tr s '2, a .  s '2 • a, tr s '3. For  
our  purposes it is more convenient to use the equivalent set 

1- t3 J1 = ½ t r s ' 2  - a ' s ' 2 " a ,  J2 = a ' s ' 2 " a ,  J3 = ~trs  . (2.5) 

The  restriction to dependence on these three invariants, together with the relations (2.4), 
represents a considerable simplification compared to a (2.2). 

In applications it is usually necessary to specify a particular form for f. In isotropic 
plasticity the commonly used yield functions are those which correspond to von Mises' and 
Tresca's  yield conditions. For  transversely isotropic materials, two forms which have been 
found useful in applications, and to agree well with experiment,  are 

1 1 
(a) f = ~ J 1  + ~ J 2  - 1 ,  kr kL 
and 

(2.6) 

[ JIll2 I, for J2 ~< k~, 

(b) f=tj~/--~r2 (2.7) 

['kZ-L - i '  f o r J , ~ < k ~ .  
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Here  k r and k L are shear yield stresses for shear on planes containing the fibres, in directions 
transverse and parallel to the fibres respectively. The form (2.6) is the most general yield 
function of the required form that is quadratic in the stress components,  and so may be 
regarded as an analogue of von Mises' condition. The form (2.7) is a maximum shear stress 
condition, and so is analogous to Tresca's condition for isotropic plasticity. 

If the coordinate system is chosen so that a lies parallel to the xl-axis (in conformity with 
the notation used in [1]), then a = (1, 0, 0) and (2.6) becomes 

1 { 1  2 }  1 2 2 
f :  ~TT ~ (0-22 --  0-33)2 + 0-23 "q'- ~LL (O"12 -I- 0-13) --  1, (2.8) 

whilst (2.7) takes the form 

1 { 1 2 2 ]1/2 
f =  ~ '7  ~ (0"22 --  0"33) q- 0"23 / --  

," 2 --  2 \1/2 1 
~LL 10-12 -I- 0"13) --  I , 

, for (0-~2 + 0"213) 2 ~ k 2 ,  

1 2 2 
for ~ (0"22 --  0"33) 2 -]- 0"23 ~ k r  • 

(2.9) 

The parameters  k r and k L are identified as shear yield stresses for shear on planes containing 
the fibres, in directions transverse and parallel to the fibres respectively. 

3. Assoc iated  f low rule 

We denote  the velocity vector by v and its cartesian components by u i. The rate of 
deformation tensor d has components dij defined by 

1(0, 0o ) (31, 
d i j =  2 Oxj + Ox i " 

As is usual in plasticity, ' t ime' here need not be real time, but may be any parameter  that 
orders the sequence of events. In the formulation of isotropic elastic-plastic theory it is usual 
to decompose d into an elastic part d e and a plastic part d p. The decomposition may be done 
in various ways. When the elastic part of the strain is small there is little difference between 
the various formulations so we adopt a simple additive decomposition and set 

d = d e -1- d p . (3.2) 

The elastic strain-rate d e is assumed to be related to the stress-rate by the elastic 
stress-strain law. For large deformations the stress-rate must be defined in a properly 
objective manner.  Anisotropic behaviour does not raise any new issues in this regard so we 
do not elaborate on this subject. We observe that linear elastic stress-strain relations for 
transversely isotropic materials are well-known ]e.g. 5, 9, 11-15]. 

It is usual to assume that the plastic strain-rate is related to the stress by the associated 
flow rule 

= X o f  (3.3) 
0 0-i] ' 
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where for a perfectly plastic material A is a positive scalar factor of proportionality, and for a 
strain-hardening plastic material A depends on strain history. We consider the hardening case 
further below. The arguments used in support of the adoption of (3.3) are not affected by 
anisotropy or kinematic constraints. We follow common practice and assume (3.3). Then 
when f is expressed as a function of J1, J2 and J3 we have 

af o L  
= X a L  a0"ij 

It is straightforward to verify that 

aL aL 
--0, a i a j i = O ,  (a = 1 ,2 ,3) .  

O0"ii aO'ij 

Hence, in this model 

t rd  p = 0,  a . d  p-a  = 0 .  (3.4) 
x 

Therefore, plastic incompressibility and plastic inextensibility in the fibre direction are 
consequences of the assumption that yield is independent of hydrostatic pressure and fibre 
tension, together with the associated flow rule. 

For the particular forms of f given by (2.6) and (2.7), (3.3) gives, for the yield function 
(2.6) 

dp = A{ k l  (s' - a ® a . s '  - s' . a®a)  + 1~ ( a ® a . s '  + s 'a®a)} , (3.5) 

and for the yield function (2.7) 

d p = 

/ i(s'  - a ® a - s '  - s ' .  a ® a ) ,  J1 : k 2 ,  
P(a ® a .  s' + s ' .  a ® a ) ,  J1 < k2, 
/ i s ' + ( b - ~ ) ( a ® a - s ' + s ' - a ® a ) ,  J l = k  2,  

J z<k  2 , 
J2 = k 2 , 

] 2  = 

(3.6) 

where /2 and ~ are positive multipliers. 
If the coordinate system is chosen so that a = (1, 0, 0), then from (2.3) 

[0 0 0 1 
s ' - a ® a . s ' - s ' . a ® a =  0 1 ( 0 2 2 - 0 " 3 3  ) 0"23 , 

0 0"23 1(0"33 - 0"22) J 

a ® a . s '  + s ' . a ® a =  0"12 0 
1_0"13 0 

and the resulting expressions for d p are given by inserting these in (3.5) and (3.6). 

4. Proportional  hardening 

The post-yield behaviour even of initially isotropic plastic materials is complicated. An 
idealisation often introduced in isotropic plasticity theory is that the current state of 
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hardening can be described by a single parameter ,  usually taken to be the shear yield stress, 
k. It  is further  assumed that the current value of k depends on the deformation history 
through an 'equivalent  strain' ,  e, such that the convected derivative ~ is a function of the 
current  plastic strain rate d p and homogeneous  of degree - 1  in time. It is usually not 
explicitly stated,  but is clearly necessary, that for isotropic response ~ must be an invariant of 
dp. Thus at most  k is a function of 

d p p p ,4p,4p ,4p (4.1) , d i j d i j  , ~ q ~ j k ~ k i  • 

Howeve r  d p = 0, and so is discarded. The invariable practice is to identify (apart  f rom a 
numerical  factor which is unimportant)  

~: = ( d P  d P )  1 / 2  (4.2) 
, - -  t j - -  ij ,, , 

although there seems no essential reason not to include also the third of (4.1). From (4.2) 
we then have 

Io ' (dPd.P.)l/2 d t  
J \ - - l J  - - t  I / 

and k = k ( e ) .  This constitutive assumption is te rmed isotropic hardening. 
We seek to extend these ideas to fibre-reinforced plastic materials. It is clear that in this 

case the description of the current state of hardening will require more than a single 
parameter ;  as a minimum the two shear yield stresses k r and k L are needed.  Nor  can it be 
assumed that k r and k L will depend on the deformation history through a single parameter ,  
because,  for example,  shearing across and along the fibres may well affect the hardening 
differently. Thus we have to define several 'equivalent strain' parameters  whose t ime 
derivatives are invariant under the symmetry transformation appropriate  to transverse 
isotropy. These are the invariants of d p analogous to the invariants (2.2) of tr, namely 

tr d p , tr(dP) 2 , tr(dP) 3 , a .  d p -a  , a-  (de) 2 . a  . (4.3) 

H o w e v e r  tr d p and a-  d p • a are both zero. We follow the practice of isotropic plasticity and 
discard the third of (4.3), leaving two equivalent strain parameters  which are derived f rom 
t r  (dP) 2 and a .  (dP) 2. a. A convenient choice is e:~ and e L, where 

• 2 = ½tr ( d p ) 2 _ a . ( d p ) 2 . a  e~ : a - ( d P ) 2 - a .  (4.4) 
~'T 

In particular,  if the coordinate system is chosen so that a = (1, 0, 0), then 

-2  2 -2 2 2 
E" T = 1 ( d 2 2  - d 3 3 )  2 + d 2 3  , e L = d 1 2  + d 1 3  , 

and it is clear that e r and e L are associated with transverse and longitudinal shearing 
respectively. Our  constitutive assumption is then 

= kL = e L ) .  ( 4 . 5 )  

This appears  to be the simplest analogue for transverse isotropy of the isotropic hardening 



Plasticity theory for  fibre-reinforced composites 113 

theory of isotropic plasticity. Since it seems inconsistent to talk of isotropic hardening of an 
anisotropic material, we use the term 'proportional hardening' for this theory. Under 
proportional hardening the yield surface has a fixed centre at the origin of stress space and 
expands (for strain-hardening material) as plastic deformation proceeds. The expansion is 
uniform in any given direction in stress space, but differs with the direction. Thus for 
example a yield surface that was initially a hyper-ellipse would evolve to another hyper- 
ellipse, but in general the ratios of the lengths of the principal axes would not remain 
constant. 

It remains to relate A to the loading parameters. From (4.5) 

1~ r Okr . Okr . OkL Ok L 
= Oe----~ eT + Oe--~ e L '  ]¢L = Oe-----r er  + Oe---L izL" (4.6) 

We confine discussion to the yield functions (2.6) and (2.7) and their associated flow rules 
(3.5) and (3.6). For (2.6) we have, using (3.5) and (4.4) 

• 2 ~ 2 k T 4 1 1  -2 = , ~ 2 k L 4 j 2  ( 4 . 7 )  e T  E L • 

Hence from (2.6), when f = 0 

~ 2  2 .2 2 -2 
= k r e  T + kLe  L . (4.8) 

Also from (2.6), during plastic loading, when f = 0 we have 

k T 2 J 1  + kL2,[2 --  2(kT3I~TJ1 + k L 3 ] ~ L J 2 )  = 0 .  (4.9) 

Hence, from (4.6), (4.8) and (4.9) 

= ! (k;2)1 + 
2 

+ J ~ / 2 k 2 2 ( k T 3 J  1 Ok.-.....~ T 
Oe L Oe L / J  

(4.10) 

This determines A in terms of the current stress, the current values of k r and kL, the 
hardening parameters Okr/Oer,  Okr/OeL, OkL/Oer, OkL/OeL, and the rate of change of the 
stress invariants J1 and J2. The corresponding deformation-rate, in plastic loading, is then 
given by (3.5). 

The plastic work-rate l/¢p is given by 

Wp dP trij P ' .:  = di js i j  , (4.11) 

and hence, from (2.5) and (3.5), for the yield function (2.6) 

(4.12) 

and, from (4.8) 
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I~p = 2(k2~ 2 + ~2 - 2 x l / 2  
T KLeL) " 

(4.13) 

Some possibilities for simplification suggest themselves. One is that k r and k L are 
functions only of the plastic work Wp. This is a plausible assumption in the case of a metal 
matrix reinforced by elastic fibres, if it is considered that the hardening of the composite 
originates in isotropic hardening of the matrix. In this case, from (4.12) 

dk T dkL 
/<r = 2 ~ A, /Q = 2 ~ A, (4.14) 

and it follows from (4.9) and (4.14) that 

{ dk r dk L ~ 1 
k T 3 J 1  ~ -4- kL3J2 d W p J  = "4 ( k T 2 J l  q- kLZJ2) ' (4.15) 

which determines A in terms of the current stress and stress rate. A further possible 
simplification is to suppose that the ratio k r / k  L remains constant, which is also plausible if 
the composite hardening results solely from isotropic hardening of the matrix. 

Another possible simplification arises if it is assumed that the mechanisms for strain- 
hardening in shear in the directions parallel and normal to the fibres are independent. In this 
case 

= kT( T), kL = kL( L), 

and (4.10) simplifies accordingly. 
Similar considerations apply if the yield function (2.7) is adopted, with its associated flow 

rule (3.6). In this case, from (4.4) and (3.6) 

/¢ { °2 .2 2 b -/2 J~ < k~ J2 = k~ (4.16) ET ~ , EL = , , " 

J~ J1 /*% Jl ~- k2 ,  J2 k2 

During plastic loading, when )¢= 0, either 

J, = k ~ ,  J, = 2kr/~T, J2 < k2,  

o r  

J, < k 2  , Jz = k2  , J2 = 2kLICL ' (4.17) 

o r  

J~ = k 2  , J2 = k2  , J, = 2krl<r , J2 = 2 k L I Q  . 

Hence from (4.6), (4.16) and (4.17), during plastic loading 

Ok T _  1 k r 2 j  I if J1 k2 J2 < k2 
I~ Oe r 2 ' ' 

O k L _  1 k~2J2 if J1 < k2 J2= k2 
b OeL 2 ' ' 

(4.18) 
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and at a vertex J1 = k~-, J2 = k2 of the yield surface, /2 and b are given by 
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i k k r  Ok T Ok T 1 
- -  + i'kL - k ~  Jl 
Oe T Oe L 2 ' 

Ok L Ok L 1 k_Llj2 
Ikkr ~ + i'kL Oe L -- 2 

(4.19) 

The plastic work-rate associated with (3.6) is, using (4.16) 

2/2J, = 2/2k 2 = 2~Tk r when J1 = k ~ ,  J2 < k2 
l/¢p = 2/,J 2 = 2/,k 2 = 2~Lk L when J1 < k2 ,  J2 = k2 .  

2(/~J1 + PJ2) = 2(/2k2 + ~k2) = 2(~rkr  + ELkL) when J1 = k 2 ,  -/2 = k2 
(4.20) 

In the special case in which k T and k L depend only on Wp, it follows from (4.20) that 

kT 

{' • 2 2 2 
d k r  12k2. 2 ' dkL txkr. 2 ' Jl = kr  , J2 < kL2 

P kL  , ]~L = 2 ~'kL , Jl < k2r , J2 = kL  • 

= 2 ~ p  • : • 2 ~ , l ' L k r + v k L ,  J l = k r ,  J2 k t  la, k T +  P k L ,  • 2 • 2 2 = 2 

(4.21) 

Then, from (4.17) and (4.21), /2 and 1) are given by 

dk r 1 k r 3 )  1 
12 dWp - 4 , 

dk L 1 kL3) 2 
b d W p -  4 , 

( .ix k r2 + i, k ZL ) d k r  

d k  L 
(12k2 + i~k2) dWp 

w h e n J l = k 2 ,  J2 < k ~ ,  

when J1 < k2 , 

1 Jlk~.l 
4 
1 

_ _ _  

4 ~ 2 , ~ L  

J2 = k ~ ,  

w h e n J l = k ~ ,  J 2 = k 2 .  

Except perhaps when a vertex of the yield surface is involved, the 'Tresca-type' yield 
function (2.7) usually leads to simpler formulae than the 'von Mises-type' yield function 
(2.6). 

5. Kinematic hardening 

Kinematic hardening is characterised by a tensor a termed the 'back stress' or 'shift tensor' 
which represents a translation of the yield surface in stress space that depends on the strain 
history. For materials of the class under consideration, in the yield condition s' is replaced by 
s' - a .  The tensor a must satisfy the same constraints as s', so we require 

t r a = 0 ,  a - a - a = 0 .  (5.1) 

It is necessary to specify evolution equations for a.  For an isotropic material, it is common 
to adopt the rule proposed by Prager 
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& = c ( e ) d  p . (5.2) 

For finite deformations, & must be an objective tensor-rate; the appropriate choice of & is a 
matter  of discussion which we do not enter into here. 

We seek a suitable generalisation of (5.2) for transversely isotropic materials. It seems 
clear that & must depend on both e L and e r .  Also the natural generalisation of (5.2) is to 
propose that & is a linear tensor function of d v with the appropriate invariance properties. 
This leads us to the form 

& = C l ( e r ,  eL)(d p - - a ® a . d e - d  p . a ® a )  + c 2 ( e r ,  eL) (aQa ,  d p + d  e - a ® a ) ,  (5.3) 

which is proposed as the appropriate form for fibre-reinforced plastic materials. 
If the coordinate system is such that a = (1, 0, 0) then 

0/11 = 0 , 0/22 q- 0/33 = 0 

and (5.3) becomes 

[0  13] li 01 o]  
0/12 1 ( 8 2 2  - -  8 3 3 )  0/23 = c , (e r ,  eL) ~(d22 - d ~ 3 )  dP3 

a, 3 &23 1(83, _ &22) d~ 3 1 P __ ~(d~ d~) 

I ° +c~(e~,e~) df~ 0 
d~V3 0 

6. General transverse isotropy 

In the theory of Sections 2-5 it was assumed that yielding is independent of the fibre tension, 
and this led to the result a .  d P ' a  = 0. This assumption seems appropriate, and is supported 
by the results of [1], within the range of axial stress for which the yield or failure strain in the 
fibre is not exceeded. For brittle-elastic fibres, the theory applies up to failure by fibre 
breakage. For elastic-plastic fibres, an additional plastic flow regime involving plastic flow in 
the fibre direction must be included; for practical fibre composites, this will only become 
operative under fibre stress of large magnitude. Such an effect is incorporated in the 
bi-modal theory proposed by Dvorak and Bahei-el-din [16]. Extensions of the present theory 
to allow yield in the fibre direction have been outlined by Spencer [11, 12] and developed in 
more detail by Rogers [13, 14]. 

It is also demonstrated in [1] that fibre-reinforced materials show strong kinematic 
hardening, especially in relation to the stress in the fibre direction. This is due to residual 
stress in the fibre and matrix following plastic flow in the fibre direction. Brief discussions are 
given in [11], [13] and [14]. 

7. Reinforcement by two families of fibres 

Similar considerations to those of Sections 2-5 can be applied in the case of an elastic-plastic 
material reinforced by two families of fibres (as for example, in a laminate comprised of 
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m a n y  a l t e rna te  layers  of  uniaxial ly  re in forced  mate r ia l  with a l te rna t ing  or ienta t ions) .  Such a 

ma t e r i a l  is, macroscop ica l ly ,  monocl in ic  in s y m m e t r y ,  or  o r tho t rop ic  if e i ther  (i) the  two 
fibre d i rec t ions  a re  o r t hogona l  or  (ii) the two fibre direct ions are mechanica l ly  equivalent .  

T h e  two fibre di rect ions  are def ined by unit  vec tors  a and  b,  which are  r ega rded  as 
con t inuous  vec to r  fields. We deno t e  by 2q~ the  angle b e t w e e n  the  two fibre direct ions,  so tha t  

a .  b = cos 2tO . (7.1)  

T h e  t ensor  

s " =  or + (1 + 3 c o s 2 2 9 ) - l [ { a  • o" . a  + b .  t r - b  - (1 + cos22qOtr t r} I  

+ {tr tr  - (2 cosec22qOa • o" . a  - (cosec22~o - 3 cotZ2~p)b • o-.  b } a ® a  

+ {tr tr  - (2 cosec22qOb • or.  b - (cosec22¢ - 3 cot22qQa • t r -  a } b ® b ]  (7.2)  

has  the  p r o p e r t y  tha t  s" is i ndependen t  of  supe rposed  hydros ta t ic  p ressure ,  of  s u p e r p o s e d  
fibre t ens ion  in the  a di rect ion,  and of  supe rposed  fibre tens ion in the b direct ion,  with 

t r s " = O ,  a . s " - a = O ,  b - s " - b = O .  (7 .3 )  

I f  yielding is i n d e p e n d e n t  of  hydros ta t ic  p ressure  and the two fibre tensions,  the yield 
func t ion  f is an isotropic  invar iant  of  s", a ® a and b ® b. Tak ing  into account  (7.3)  it fol lows 

[4] tha t  f can be expressed  as a funct ion of  

J1 = ½ tr s''2 - a ' s " 2 " a ,  J2 = a ' s " 2 " a ,  J3 

J4 = l t r s " 2 - b ' s " 2 " b ,  J5 = a . s " . b c o s 2 ~  , 

= ½ tr S "3 , 

J6 = a -  s "z"  h c o s  2q~ 
(7.4)  

and  cos22q~. In  the case when  the two families of  fibres are mechanica l ly  equiva len t ,  then  f 

has  to be  a s y m m e t r i c  funct ion  of  a and b. 
T h e  mos t  genera l  quadratic yield funct ion tha t  satisfies these  condi t ions  is 

Jl + 2J2 - J4 J6 f = J ,  J 4 +  2 + - 2  - 1  , (7.5)  
C 1 C 2 C 3 

w h e r e  c~, c 2 and  c 3 have  d imens ions  of  stress and are funct ions  of  cos 2q~. If  we choose  the 
coo rd ina t e  sys tem so that  the fibres lie in the planes  x 3 = cons tan t  and  m a k e  angles --- q~ with 
the  x~ axis,  so tha t  

a = (cos q~, sin q~, 0 ) ,  b = (cos q~, - s i n  q~, 0) (7.6)  

then  (7 .5)  can be wri t ten  in the  fo rm 

1 1 2 1 2 - 1  
f =  " ~  {(13"ll --  0"33) sin2q ~ - (0"22 - 0"33) c ° $ 2 ~ }  2 + ~ 0-13 -4- ~222 0-23 , (7.7)  

w h e r e  Y, k I and  k 2 c a n  be re la ted  to c l ,  c z and c 3. If  we fur ther  deno te  
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Y = Y1 sin2¢ = Y2 c°s2~p = Y 3 l c ° s 2 ¢ -  sin2~[, (7.8) 

then  k I and k 2 can be interpreted as shear  yield stresses  for shear  o n  surfaces  x 3 = constant  in 
the  x 1 and x 2 direct ions  respect ive ly ,  and Y1, Y2 and I13 as tensi le  yield stresses  in the  x l ,  x 2 
and x 3 d irect ions  respect ively .  T h e  f low rule assoc iated  with (7 .5)  and (7 .7)  is g iven in [4] 
and  [5]. Proport iona l  and k inemat ic  hardening  rules can be formula ted  in a m a n n e r  similar 
to  that used  in Sect ions  4 - 5 ,  but we  omi t  details.  
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