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Plasticity theory for fibre-reinforced composites

A.J.M. SPENCER
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, UK

Abstract. Recent experiments reported in [1] show that for a boron-aluminium fibre-reinforced composite plastic
yielding is effectively independent of tension in the fibre direction over a wide range of values of this tension. This
confirms a long-standing conjecture by the author and colleagues. The results have major implications for the
formulation of plasticity theories for fibre-reinforced materials. This paper reviews the theory of anisotropic
plasticity based on the usual assumptions of plasticity theory, together with the property that yielding is not affected
by a superposed tension in the fibre direction. Yield conditions, flow rules and hardening rules are formulated for
uniaxial reinforcement; brief consideration is given to a material reinforced by two families of fibres.

1. Introduction

Dvorak, Bahei-el-din, Macheret and Liu [1] have recently reported some important experi-
ments on the elastic-plastic behaviour of a fibre-reinforced boron-aluminium composite. The
experiments were performed on axially reinforced tubular specimens loaded by axial tension,
torsion and internal pressure. Among other results, they show that over a wide range of
values of the direct stress in the fibre-direction (essentially over the range in which the yield
or failure stress of the fibre is not exceeded) the yield behaviour of the composite is
independent of this direct stress in the fibre direction. The effect is shown in Fig. 1, which is
based on Fig. 7 of [1]. The yield surface in the relevant stress space is ‘sausage-shaped’,
being a fairly long cylinder with closed ends. It is also shown by the extensive experiments
described in [1] that subsequent to plastic deformation the yield surface retains this
sausage-shape but translates in stress-space, demonstrating a large degree of kinematic
hardening.

These results provide striking confirmation of a conjecture made by the author and
colleagues over twenty years ago [2-5]. The results have important implications for the
formulation of theories of plasticity for fibre-reinforced composites, with particular reference
to metal-matrix composites. These implications have been explored in previous publications
{2-15] but prior to the availability of experimental information, the theory had to be
regarded in a rather tentative manner. As the experimental data now exist, it seems
worthwhile to draw attention to this work. This paper is a summary of the theory proposed
in the papers cited above.

A theory of the rigid-plastic plastic behaviour of materials reinforced by a single family of
fibres was formulated by Mulhern, Rogers and Spencer [2]. This theory assumed the material
to be inextensible in the fibre direction, and it was shown that, as a consequence of this
assumption and the associated flow rule, the yield function is independent of the fibre
tension (that is, the direct stress in the fibre direction). Subsequently the same authors [3]
formulated an elastic-plastic theory of fibre-reinforced materials, in which it was assumed
that the plastic part of the extensional strain in the fibre direction is zero, and in this case
also it follows from the associated flow rule that plastic yielding is independent of fibre
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Fig. 1. Experimental results by Dvorak et al. [1] for initial yield of a boron-aluminium fibre-reinforced composite,
with fibres parallel to the x,-axis.

tension. However, this theory does not require inextensible fibres, because it admits an
elastic strain in the fibre direction.

Smith and Spencer [4] formulated a rigid-plastic theory for material reinforced by two
families of inextensible fibres, but adopted a slightly different point of view; they postulated
that yielding is independent of fibre tensions. It then follows, if the associated flow rule is
adopted, that the plastic extensional strain in a fibre direction is zero. The same viewpoint
was taken in several subsequent publications, for example [5-15]. The assumptions of (a)
inextensibility in the fibre direction, and (b) yield independent of fibre tension, are, in
conjunction with the associated flow rule, virtually equivalent in rigid-plastic theory.
However, in an elastic-plastic theory, (b) is less restrictive than (a), because it permits an
axial elastic strain. Since (b) is susceptible to direct experimental observation, it seems to be
the more natural choice of postulate for materials which exhibit this kind of behaviour.

2. Initial yield conditions — one family of fibres

We refer all vector and tensor quantities to a system of rectangular cartesian coordinates x,.
The Cauchy stress is denoted by @, with cartesian components o,.

In most theories of metal plasticity, we postulate a yield function f(o;;) such that in
admissible stress states f <0, with f=0 when plastic deformation is taking place. If the
plastic material is isotropic then f can be expressed as a function of the stress invariants tr o,
tro’ and tr e’ In isotropic metal plasticity it is observed experimentally that for many
materials yielding is effectively independent of a superposed hydrostatic pressure, or
equivalently of tr o. This observation greatly simplifies the formulation and application of
the theory. It is incorporated into the theory by restricting f to depend on ¢ only through the
deviatoric stress s, where

s=o—iltro. 2.1

Then trs =0 and f can be expressed as a function of trs® and trs>
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For anisotropic materials f is a function of ¢ (or s) which is invariant under the appropriate
transformation group which describes the anisotropy. A material reinforced by a single
family of fibres, randomly distributed in their cross-sectional planes, is locally transversely
isotropic with respect to the local fibre direction, which can be characterised by a unit vector
a. In this case f is a function of the five invariants [2, 5, 12]

tro, tro?, tro’, a-o-a, a,o’-a. (2.2)

For fibre-reinforced metals we expect initial yielding to remain independent of tr . We now
have in [1] experimental confirmation that f is independent of the stress a- o - a in the fibre
direction over a wide range of values of this stress. The extra-stress s’, defined as

ss=0—-i(treg—a-o-a)l+i(troc—3a-o-aal®a, (2.3)

(where a®a denotes the tensor product) has the property that s’ is unchanged if o is
replaced by o — pI+ Ta®a for arbitrary p (representing a hydrostatic pressure) and T
(representing a tension in the fibre direction). Thus s’ is independent of hydrostatic pressure
and fibre tension. Consequently, if f(o,) is expressed as a function of s’, then f is
independent of hydrostatic pressure and fibre tension. Thus s’ has the same role in relation
to independence of hydrostatic pressure and fibre tension as s has in relation to independ-
ence of hydrostatic pressure only. Furthermore, it follows from (2.3) that

trs'=0, a‘s’-a=0, (2.4)

Now the set (2.2) is equivalent to

2
tro, trs'*, trs’”, a-o-a, a-s -a,

so, if f is independent of tr & and a- ¢ -a, and the material is transversely isotropic with

respect to the direction a, then f may be expressed as a function of trs'> a-s'>-a, trs”. For
our purposes it is more convenient to use the equivalent set

Ji=3trs?—a-s?-a, J,=a-s%-a, J=its’. (2.5)
The restriction to dependence on these three invariants, together with the relations (2.4),
represents a considerable simplification compared to a (2.2).

In applications it is usually necessary to specify a particular form for f. In isotropic
plasticity the commonly used yield functions are those which correspond to von Mises’ and
Tresca’s yield conditions. For transversely isotropic materials, two forms which have been
found useful in applications, and to agree well with experiment, are

1 1

(a) f=FJI+k—ZJZ—1, (26)
T L

and
JI/Z
—kl?—l, for J, < k3,

® =1, (2.7)
2

T for J, <k7.
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Here k, and k, are shear yield stresses for shear on planes containing the fibres, in directions
transverse and parallel to the fibres respectively. The form (2.6) is the most general yield
function of the required form that is quadratic in the stress components, and so may be
regarded as an analogue of von Mises’ condition. The form (2.7) is a maximum shear stress
condition, and so is analogous to Tresca’s condition for isotropic plasticity.

If the coordinate system is chosen so that a lies parallel to the x,-axis (in conformity with
the notation used in [1]), then a=(1,0,0) and (2.6) becomes

1 |1 1
f= k_z {Z (o5, — 0'33)2 + 0';3} + k_z (0'%2 + 0'%3) -1, (2.8)
T L

whilst (2.7) takes the form

1 {1 12
k_T{Z (0-22_0'33)2+0'§3} -1, for(o:,+ 0%, <ki,

f= (2.9)

1 1
E (0'?2 + 0'%3)1/2 -1, for 4 (02 — 0'33)2 + 0'53 = sz .

The parameters k, and k, are identified as shear yield stresses for shear on planes containing
the fibres, in directions transverse and parallel to the fibres respectively.

3. Associated flow rule

We denote the velocity vector by v and its cartesian components by v;,. The rate of
deformation tensor d has components d; defined by

-5 (52 5)
dy=3 o) (3.1)

As is usual in plasticity, ‘time’ here need not be real time, but may be any parameter that
orders the sequence of events. In the formulation of isotropic elastic-plastic theory it is usual
to decompose d into an elastic part d° and a plastic part d”. The decomposition may be done
in various ways. When the elastic part of the strain is small there is little difference between
the various formulations so we adopt a simple additive decomposition and set

d=d‘+d”. (3.2)

The elastic strain-rate d° is assumed to be related to the stress-rate by the elastic
stress-strain law. For large deformations the stress-rate must be defined in a properly
objective manner. Anisotropic behaviour does not raise any new issues in this regard so we
do not elaborate on this subject. We observe that linear elastic stress-strain relations for
transversely isotropic materials are well-known [e.g. 5, 9, 11-15].

It is usual to assume that the plastic strain-rate is related to the stress by the associated
flow rule

poi (3.3)
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where for a perfectly plastic material A is a positive scalar factor of proportionality, and for a
strain-hardening plastic material A depends on strain history. We consider the hardening case
further below. The arguments used in support of the adoption of (3.3) are not affected by
anisotropy or kinematic constraints. We follow common practice and assume (3.3). Then
when f is expressed as a function of J,, J, and J; we have

aof aJ,
P
d; A‘,Elal 60'

It is straightforward to verify that

aJ, aJ, B
— =0, a,a; = =0, (a=1,2,3).

ii ij

Hence, in this model

trd” =0, a-d’-a=0. (3.4)

~

Therefore, plastic incompressibility and plastic inextensibility in the fibre direction are
consequences of the assumption that yield is independent of hydrostatic pressure and fibre
tension, together with the associated flow rule.

For the particular forms of f given by (2.6) and (2.7), (3.3) gives, for the yield function
(2.6)

d” = A {kz (" —a®a-s' —s a®a)+ (a®a s’ +sa®a)} (3.5)

and for the yield function (2.7)

p(s' —a®a-s'—s'-a@a), Jo=ki, J,<ki,
d’={v(a®a-s'+s -a®a), I <ki, IL=k;, (3.6)
us'+ (v —pn)(a®a-s’'+s'-a®a), J,=ky, L=k,

where p and v are positive multipliers.
If the coordinate system is chosen so that a=(1,0,0), then from (2.3)

0 0 0
1
s —a®a- s’ —s' -aQa=|[0 3(op—0y) >3 »
1
0 O3 3(033 — 0y3)

0 o, o4
a®a-s'+s'-a®@a=|0o, 0 0|,
o; 0 0

and the resulting expressions for d” are given by inserting these in (3.5) and (3.6).

4. Proportional hardening

The post-yield behaviour even of initially isotropic plastic materials is complicated. An
idealisation often introduced in isotropic plasticity theory is that the current state of
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hardening can be described by a single parameter, usually taken to be the shear yield stress,
k. It is further assumed that the current value of k& depends on the deformation history
through an ‘equivalent strain’, €, such that the convected derivative £ is a function of the
current plastic strain rate df, and homogeneous of degree —1 in time. It is usually not
explicitly stated, but is clearly necessary, that for isotropic response £ must be an invariant of
d;. Thus at most ¢ is a function of
df, drdr, dfdhdz;; . (4.1)
However df =0, and so is discarded. The invariable practice is to identify (apart from a
numerical factor which is unimportant)

s p gpN\1/2

e=(djd;) ", (4.2)
although there seems no essential reason not to include also the third of (4.1). From (4.2)
we then have

t

8=L (dfd?)'"? dt,
and k = k(¢g). This constitutive assumption is termed isotropic hardening.

We seek to extend these ideas to fibre-reinforced plastic materials. It is clear that in this
case the description of the current state of hardening will require more than a single
parameter; as a minimum the two shear yield stresses k- and &k, are needed. Nor can it be
assumed that k., and &, will depend on the deformation history through a single parameter,
because, for example, shearing across and along the fibres may well affect the hardening
differently. Thus we have to define several ‘equivalent strain’ parameters whose time
derivatives are invariant under the symmetry transformation appropriate to transverse
isotropy. These are the invariants of d” analogous to the invariants (2.2) of o, namely

trd”, tr(d”)?, tr(d”)*, a-d’-a, a-(d’)’-a. 4.3)

However trd” and a-d” -a are both zero. We follow the practice of isotropic plasticity and
discard the third of (4.3), leaving two equivalent strain parameters which are derived from
tr (d°)” and a-(d”)*-a. A convenient choice is &, and ¢, , where

ér=3tr@)yY -—a-(d")-a, é =a-(@d") a. (4.4)
In particular, if the coordinate system is chosen so that a= (1,0, 0), then
é§=%(d22—d33)2+d§3, éi=df2+df3,

and it is clear that &, and ¢, are associated with transverse and longitudinal shearing
respectively. Our constitutive assumption is then

kr=ki(er, €.), k,=k;(er, & ). (4.5)

This appears to be the simplest analogue for transverse isotropy of the isotropic hardening
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theory of isotropic plasticity. Since it seems inconsistent to talk of isotropic hardening of an
anisotropic material, we use the term ‘proportional hardening’ for this theory. Under
proportional hardening the yield surface has a fixed centre at the origin of stress space and
expands (for strain-hardening material) as plastic deformation proceeds. The expansion is
uniform in any given direction in stress space, but differs with the direction. Thus for
example a yield surface that was initially a hyper-ellipse would evolve to another hyper-
ellipse, but in general the ratios of the lengths of the principal axes would not remain
constant.
It remains to relate A to the loading parameters. From (4.5)

_oky . kg . P ok ok

=— ¢+ —§£ =—=ér+t—=
T de;, T 9, b7 L e, T ag

£, . (4.6)

We confine discussion to the yield functions (2.6) and (2.7) and their associated flow rules
(3.5) and (3.6). For (2.6) we have, using (3.5) and (4.4)

2=, éi=a%%[YT,. (4.7)
Hence from (2.6), when f=0

A=k el +kie . (4.8)
Also from (2.6), during plastic loading, when f =0 we have

k72 J, + k2, =2k 2k d, + k[ *k, J) =0. (4.9)

Hence, from (4.6), (4.8) and (4.9)

‘ e ok i ok (. ok 3. 0k
/\{J:/szz(kT3jl e, TR a_ei) " J;/szz(kT3jl ae, T KL an)}
1o 2:  ,2;
- L k. (4.10)

This determines A in terms of the current stress, the current values of k; and k,, the
hardening parameters ok, /der, 3k /0€,,0k, /d€r, dk,/d¢,, and the rate of change of the
stress invariants J, and J,. The corresponding deformation-rate, in plastic loading, is then
given by (3.5).

The plastic work-rate Wp is given by

W,=dlo, =d’s, (4.11)

ij >ij ij o
and hence, from (2.5) and (3.5), for the yield function (2.6)

. ) J .
W——Z,\(—l +——2)=2,\, :
A a2t e (4.12)

and, from (4.8)
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W, =2(k7é7+kié1)'". (4.13)

Some possibilities for simplification suggest themselves. One is that k, and k, are
functions only of the plastic work W,. This is a plausible assumption in the case of a metal
matrix reinforced by elastic fibres, if it is considered that the hardening of the composite
originates in isotropic hardening of the matrix. In this case, from (4.12)

dk, .
LA (4.14)

dk, . .
X kL—Zde ,

k,.=2 ,
T dw,

and it follows from (4.9) and (4.14) that

dk,
L dw,

dk,

+k;°T, W
p

);{kfj } = % (k72 J, + k2D, (4.15)
which determines A in terms of the current stress and stress rate. A further possible
simplification is to suppose that the ratio k,/k; remains constant, which is also plausible if
the composite hardening results solely from isotropic hardening of the matrix.

Another possible simplification arises if it is assumed that the mechanisms for strain-
hardening in shear in the directions parallel and normal to the fibres are independent. In this
case

kr=k(er), k, =k, (e),

and (4.10) simplifies accordingly.
Similar considerations apply if the yield function (2.7) is adopted, with its associated flow
rule (3.6). In this case, from (4.4) and (3.6)

A 0 =k, J,<ki
§2=00 =T, J<ki, L,=Kki. (4.16)
/izjl 1}2]2 lekzr’ J2=k2L

During plastic loading, when f=0, either

J =k, J, =2k k;, <k,

I <ki, L=k, =2k, 4.17
2 2

Jo=ki, L=k, J=2kky, J,=2kk,.

Hence from (4.6), (4.16) and (4.17), during plastic loading

. dk 1. .. .
Ma—ﬁzziszjl it J, =k, J,<ki,

4.18
ok, 1 (4.18)

s :zka'z itJ, <k, L=k,
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and at a vertex J, = k>, J, = k> of the yield surface, 4 and ¥ are given by

ok, dkr 1,
;.LkTa—ET VkL'é'E—L—szJI,
. (4.19)
ok, dk, 1 .
[.Lkra—ET'F VkL ae,_ = ) kL .’2
The plastic work-rate associated with (3.6) is, using (4.16)
20, =240k =26k, when J, = k%, I,<k:
W, =120], =20k} =26k, when J, <k3, J,= kz .
2(pd, + v0,) =2(pks + vk3)=2(é ks + é,k,) whenJ =k%, J,=k; (4.20)

In the special case in which k; and k, depend only on W,, it follows from (4.20) that

_ dk wk3 , dk ,zk;,, 11=sz, 12<k2
k,=2dWT vks kL=2dWL vk; | Jo<ki, L=ki. (4.21)
Pkt + ok r ik +vky, Ji=ky, L=k

Then, from (4.17) and (4.21), 1 and » are given by

dk .
;idWT=%k;3JI, when J, = k3, J,<k;,
P
dk, 1 _,.
”dWLZZ"L}’Z’ when J, < k3, I,=k;,
P
. o dky 1,
(k7 + vky) dWT=;JIkT‘
P 1.2 _ 12
when J, = k7, JL,=k;.
(k2 + vk?) dk, _1 Lk;!
2™L
T Hdw, 4

Except perhaps when a vertex of the yield surface is involved, the ‘Tresca-type’ yield

function (2.7) usually leads to simpler formulae than the ‘von Mises-type’ yield function
(2.6).

5. Kinematic hardening

Kinematic hardening is characterised by a tensor e termed the ‘back stress’ or ‘shift tensor’
which represents a translation of the yield surface in stress space that depends on the strain
history. For materials of the class under consideration, in the yield condition s’ is replaced by
s’ — a. The tensor a must satisfy the same constraints as s’, so we require

tra=0, a-a-a=0. (5.1)

It is necessary to specify evolution equations for a. For an isotropic material, it is common
to adopt the rule proposed by Prager
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a=c(e)d” . (5.2)
For finite deformations, & must be an objective tensor-rate; the appropriate choice of a is a
matter of discussion which we do not enter into here.

We seek a suitable generalisation of (5.2) for transversely isotropic materials. It seems
clear that & must depend on both ¢, and £;. Also the natural generalisation of (5.2) is to

propose that « is a linear tensor function of d” with the appropriate invariance properties.
This leads us to the form

a@=c(ep,6,)d” —a®a-d"—d”-a®a) + c,(¢;, ¢, )(a®a-d” +d” -a®a), (5.3)

which is proposed as the appropriate form for fibre-reinforced plastic materials.
If the coordinate system is such that a= (1,0, 0) then

a,=0, a,, +a;;=0

and (5.3) becomes

0 d,, G, 0 0 0
dlZ %(dzz - d33) d23 = Cl(b‘r, EL) 0 %(dgz - d§3 d§3
d13 d23 %(daa - dzz) 0 d§3 %(d§3 - dgz
0 df, di,
+¢,(er, &) i, 0 0
>, 0 0

6. General transverse isotropy

In the theory of Sections 2-5 it was assumed that yielding is independent of the fibre tension,
and this led to the result a-d” -a=10. This assumption seems appropriate, and is supported
by the results of [1], within the range of axial stress for which the yield or failure strain in the
fibre is not exceeded. For brittle-elastic fibres, the theory applies up to failure by fibre
breakage. For elastic-plastic fibres, an additional plastic flow regime involving plastic flow in
the fibre direction must be included; for practical fibre composites, this will only become
operative under fibre stress of large magnitude. Such an effect is incorporated in the
bi-modal theory proposed by Dvorak and Bahei-el-din [16]. Extensions of the present theory
to allow yield in the fibre direction have been outlined by Spencer [11, 12] and developed in
more detail by Rogers [13, 14].

It is also demonstrated in [1] that fibre-reinforced materials show strong kinematic
hardening, especially in relation to the stress in the fibre direction. This is due to residual
stress in the fibre and matrix following plastic flow in the fibre direction. Brief discussions are
given in [11], [13] and [14].

7. Reinforcement by two families of fibres

Similar considerations to those of Sections 2—5 can be applied in the case of an elastic-plastic
material reinforced by two families of fibres (as for example, in a laminate comprised of
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many alternate layers of uniaxially reinforced material with alternating orientations). Such a
material is, macroscopically, monoclinic in symmetry, or orthotropic if either (i) the two
fibre directions are orthogonal or (ii) the two fibre directions are mechanically equivalent.

The two fibre directions are defined by unit vectors a and b, which are regarded as
continuous vector fields. We denote by 2¢ the angle between the two fibre directions, so that

ab=cos2¢p . (7.1)
The tensor

s'=0a+(1+3cos2¢) '[{a-o-a+b-o-b—(1+cos2¢)tr o}1
+ {tr & — (2 cosec’2¢)a- o -a — (cosec’2¢ — 3cot’2¢)b- o -b}a®a
+ {tr & — (2 cosec’2¢)b- o - b — (cosec’2¢ — 3 cot’2¢)a- @ -a}bQb] (7.2)

has the property that s” is independent of superposed hydrostatic pressure, of superposed
fibre tension in the a direction, and of superposed fibre tension in the b direction, with

trsnzo’ a_sll,a=0, b-s"-b=0. (73)

If yielding is independent of hydrostatic pressure and the two fibre tensions, the yield
function f is an isotropic invariant of s”, a®a and b®b. Taking into account (7.3) it follows
{4] that f can be expressed as a function of

J,=1itrs”—a-s"-a, J,=a-s"-a, J,=1trs”

(7.4)

n2

J,=1itrs” —b-s”b, Js=a-s"-bcos2e, Jy=a-s"" -bcos2e
and cos’2¢. In the case when the two families of fibres are mechanically equivalent, then f
has to be a symmetric function of a and b.

The most general quadratic yield function that satisfies these conditions is

Jo+J, I +20,-1, U,
_ 4, 2 + 26

2 3 2
€ 3 ¢

-1, (1.5)

f

where c,, ¢, and ¢, have dimensions of stress and are functions of cos 2¢. If we choose the
coordinate system so that the fibres lie in the planes x, = constant and make angles *+ ¢ with
the x, axis, so that

a = (cos ¢, sin ¢, 0), b = (cos ¢, —sin ¢, 0) (7.6)

then (7.5) can be written in the form

1 . 1 1
f= o3 ({0 — 033) 51n2¢’ — (0 — 033)0052€°}2 + = 0?3 + 5 053 -1, (7.7)
Y k7 k;

where Y, k, and k, can be related to c,, ¢, and c,. If we further denote
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Y = Y, sin’p = Y, cos’p = Y,|cos’p — sin’p| , (7.8)

then k&, and k, can be interpreted as shear yield stresses for shear on surfaces x, = constant in
the x, and x, directions respectively, and Y, Y, and Y, as tensile yield stresses in the x,, x,
and x, directions respectively. The flow rule associated with (7.5) and (7.7) is given in [4]
and [5]. Proportional and kinematic hardening rules can be formulated in a manner similar
to that used in Sections 4-5, but we omit details.
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